Skip to Content
Merck
  • Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes.

Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes.

Analytical and bioanalytical chemistry (2010-11-12)
Ayanna U Jackson, Thomas Shum, Ewa Sokol, Allison Dill, R Graham Cooks
ABSTRACT

Spray solvent doped with silver ions increases the ease of olefin detection by desorption electrospray ionization (DESI). Characteristic silver adducts were generated in up to 50 times greater abundance when compared to conventional DESI spray solvents for the biologically significant olefin, arachidonic acid, in the positive ion mode. In the analysis of 26 lipids, silver adduct formation was highly favorable for fatty acids, fatty acid esters and prostaglandins but not applicable to some other classes (e.g., polar lipids such as ceramide and its derivative cerebroside sulfate). An investigation exploring competitive Ag(+) cationization with a mixture of components demonstrated that polyunsaturated compounds form Ag(+) adducts most readily. Silver cationization allowed the distinction between three sets of isomers in the course of multiple-stage collision-induced dissociation, so providing insight into the location of the olefin bonds. A silver ion-doped solvent was used in DESI imaging of normal and tumor canine bladder tissue sections. The Ag(+) fatty acid adducts permitted post facto differentiation between the normal and tumor regions. In addition, silver adduct formation in the course of DESI imaging of tissue sections revealed the presence of triacylglycerides, a class of compounds not previously identified through DESI imaging. A simple silver nitrate spray solvent has the potential to further improve DESI analysis of unsaturated biomolecules and other molecules containing π-bonds through selective silver cationization.

MATERIALS
Product Number
Brand
Product Description

Avanti
PGE1, Avanti Polar Lipids 900100P, powder