Skip to Content
Merck
  • Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis.

Mitochondrial calcium uniporter regulates PGC-1α expression to mediate metabolic reprogramming in pulmonary fibrosis.

Redox biology (2019-09-02)
Linlin Gu, Jennifer L Larson Casey, Shaida A Andrabi, Jun Hee Lee, Selene Meza-Perez, Troy D Randall, A Brent Carter
ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an increased mortality. Metabolic reprogramming has a critical role in multiple chronic diseases. Lung macrophages expressing the mitochondrial calcium uniporter (MCU) have a critical role in fibrotic repair, but the contribution of MCU in macrophage metabolism is not known. Here, we show that MCU regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and metabolic reprogramming to fatty acid oxidation (FAO) in macrophages. MCU regulated PGC-1α expression by increasing the phosphorylation of ATF-2 by the p38 MAPK in a redox-dependent manner. The expression and activation of PGC-1α via the p38 MAPK was regulated by MCU-mediated mitochondrial calcium uptake, which is linked to increased mitochondrial ROS (mtROS) production. Mice harboring a conditional expression of dominant-negative MCU in macrophages had a marked reduction in mtROS and FAO and were protected from pulmonary fibrosis. Moreover, IPF lung macrophages had evidence of increased MCU and mitochondrial calcium, increased phosphorylation of ATF2 and p38, as well as increased expression of PGC-1α. These observations suggest that macrophage MCU-mediated metabolic reprogramming contributes to fibrotic repair after lung injury.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-MCU antibody produced in mouse, Prestige Antibodies® Powered by Atlas Antibodies, clone CL3576, purified immunoglobulin