Skip to Content
Merck
  • DACT2 Epigenetic Stimulator Exerts Dual Efficacy for Colorectal Cancer Prevention and Treatment.

DACT2 Epigenetic Stimulator Exerts Dual Efficacy for Colorectal Cancer Prevention and Treatment.

Pharmacological research (2017-12-05)
Linlin Lu, Ying Wang, Rilan Ou, Qian Feng, Liyan Ji, Hongming Zheng, Yue Guo, Xiaoxiao Qi, Ah-Ng Tony Kong, Zhongqiu Liu
ABSTRACT

DACT2, a tumor suppressor gene in various tumors, is frequently down-regulated via hypermethylation. We found DACT2 gene expressions were dramatically silenced (P = 0.002, n = 8) in our clinical colorectal cancer (CRC) tissues, and TCGA data revealed DACT2 hypermethylation correlated to CRC poor prognosis (P = 0.0129, HR = 0.2153, n = 248). Thus, by screening twelve nutritional compounds, we aimed to find out an effective DACT2 epigenetic stimulator to determine whether DACT2 epigenetic restoration could reverse CRC tumorigenesis. We found that kaempferol significantly increased DACT2 expressions up to 3.47-fold in three CRC cells (HCT116, HT29, and YB5). Furthermore, kaempferol remarkably decreased DACT2 methylation (range: 19.58%-67.00%, P < 0.01), while increased unmethylated DACT2 by 13.72-fold (P < 0.01) via directly binding to DNA methyltransferases DNMT1. By epigenetic reactivating DACT2 transcription, kaempferol notably inhibited nuclear β-catenin expression to inactivate Wnt/β-catenin pathway, which consequently restricted CRC cells proliferation and migration. Moreover, in AOM/DSS-induced CRC tumorigenesis, kaempferol-demethylated DACT2 effectively decreased tumor load (range: 50.00%-73.52%, P < 0.05). By determining the chemopreventive and chemotherapeutic efficacy of a novel DACT2 demethylating stimulator, we demonstrated that DACT2 epigenetic restoration could successfully slow down and reverse CRC tumorigenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Azoxymethane, 13.4 M, ≥98%