Skip to Content
Merck
  • Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2.

Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2.

The Journal of thoracic and cardiovascular surgery (2014-04-08)
Xi-Wu Zhang, Bo-Yao Zhang, Shu-Wei Wang, De-Jun Gong, Lin Han, Zhi-Yun Xu, Xiao-Hong Liu
ABSTRACT

Valve calcification involves transdifferentiation of valve interstitial cells (VICs) into osteoblasts. Twist-related protein 1 (TWIST1) has been established as a negative regulator of osteoblast differentiation in both mouse and human mesenchymal stem cells, but its function in human aortic VICs is unknown. In our study, we determined the mechanism of TWIST1 action in regulating osteoblastic transdifferentiation of human aortic VICs. Human calcified and noncalcified aortic valves were examined for TWIST1 expression. Human aortic VICs were isolated and cultured. The data showed that calcified aortic valves express lower levels of TWIST1. In vitro experiments showed that TWIST1 overexpression inhibited the transdifferentiation of VICs into osteoblasts by decreasing the expression of runt-related transcription factor 2 (RUNX2) and its downstream osteoblastic markers. Through chromatin immunoprecipitation and dual luciferase assays, we found that TWIST1 repressed the expression of RUNX2 by directly binding to an E-box located at -820 bp of the RUNX2 P2 promoter region and inhibiting its activity. Our study results suggest that TWIST1 could play an important role in preventing human aortic valve calcification by negatively regulating osteoblastic transdifferentiation of human aortic VICs through direct inhibition of RUNX2.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ANTI-RUNX2 antibody produced in mouse, clone 6E1, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard