Skip to Content
Merck
  • Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor.

Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2011-09-09)
Ehud Chorin, Ofir Vinograd, Ilya Fleidervish, David Gilad, Sharon Herrmann, Israel Sekler, Elias Aizenman, Michal Hershfinkel
ABSTRACT

Vesicular Zn(2+) regulates postsynaptic neuronal excitability upon its corelease with glutamate. We previously demonstrated that synaptic Zn(2+) acts via a distinct metabotropic zinc-sensing receptor (mZnR) in neurons to trigger Ca(2+) responses in the hippocampus. Here, we show that physiological activation of mZnR signaling induces enhanced K(+)/Cl(-) cotransporter 2 (KCC2) activity and surface expression. As KCC2 is the major Cl(-) outward transporter in neurons, Zn(2+) also triggers a pronounced hyperpolarizing shift in the GABA(A) reversal potential. Mossy fiber stimulation-dependent upregulation of KCC2 activity is eliminated in slices from Zn(2+) transporter 3-deficient animals, which lack synaptic Zn(2+). Importantly, activity-dependent ZnR signaling and subsequent enhancement of KCC2 activity are also absent in slices from mice lacking the G-protein-coupled receptor GPR39, identifying this protein as the functional neuronal mZnR. Our work elucidates a fundamentally important role for synaptically released Zn(2+) acting as a neurotransmitter signal via activation of a mZnR to increase Cl(-) transport, thereby enhancing inhibitory tone in postsynaptic cells.