Skip to Content
Merck
  • EPR and optical studies of erbium-doped beta-PbF2 single-crystals and nanocrystals in transparent glass-ceramics.

EPR and optical studies of erbium-doped beta-PbF2 single-crystals and nanocrystals in transparent glass-ceramics.

Physical chemistry chemical physics : PCCP (2007-10-25)
Géraldine Dantelle, Michel Mortier, Daniel Vivien
ABSTRACT

beta-PbF(2) single-crystals and nanocrystals in transparent glass-ceramics doped with ErF(3) have been synthesized and studied with two complementary techniques: electron paramagnetic resonance (EPR) and optical spectroscopy (absorption, selective excitation, fluorescence). A comparative study shows that, in both single-crystals and glass-ceramics, Er(3+) ions occupy the same types of sites, leading to similar optical properties. An EPR investigation demonstrates that, in these materials, part of the Er(3+) ions occupy cubic symmetry sites. For these ions, we determine the crystal field splitting of the ground state (4)I(15/2) and the symmetry of its sublevels. We also provide evidence for the presence of another type of Er(3+) ions, not detectable by EPR but evidenced by optical spectroscopy. We clearly show that this Er(3+), which gives rise to up-conversion luminescence, corresponds to clusters associating Er(3+) and F(-) ions. In the single-crystals, the proportion of these two types of erbium ions is estimated. It strongly depends on the doping rate of the beta-PbF(2) crystals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lead(II) fluoride, 99.99% trace metals basis
Sigma-Aldrich
Lead(II) fluoride, powder, ≥99%