Skip to Content
Merck
  • Low-Intensity Extracorporeal Shock Wave Therapy Promotes Bladder Regeneration and Improves Overactive Bladder Induced by Ovarian Hormone Deficiency from Rat Animal Model to Human Clinical Trial.

Low-Intensity Extracorporeal Shock Wave Therapy Promotes Bladder Regeneration and Improves Overactive Bladder Induced by Ovarian Hormone Deficiency from Rat Animal Model to Human Clinical Trial.

International journal of molecular sciences (2021-09-11)
Kun-Ling Lin, Jian-He Lu, Kuang-Shun Chueh, Tai-Jui Juan, Bin-Nan Wu, Shu-Mien Chuang, Yung-Chin Lee, Mei-Chen Shen, Cheng-Yu Long, Yung-Shun Juan
ABSTRACT

Postmenopausal women with ovary hormone deficiency (OHD) are subject to overactive bladder (OAB) symptoms. The present study attempted to elucidate whether low-intensity extracorporeal shock wave therapy (LiESWT) alters bladder angiogenesis, decreases inflammatory response, and ameliorates bladder hyperactivity to influence bladder function in OHD-induced OAB in human clinical trial and rat model. The ovariectomized (OVX) for 12 months Sprague-Dawley rat model mimicking the physiological condition of menopause was utilized to induce OAB and assess the potential therapeutic mechanism of LiESWT (0.12 mJ/mm2, 300 pulses, and 3 pulses/second). The randomized, single-blinded clinical trial was enrolled 58 participants to investigate the therapeutic efficacy of LiESWT (0.25 mJ/mm2, 3000 pulses, 3 pulses/second) on postmenopausal women with OAB. The results revealed that 8 weeks' LiESWT inhibited interstitial fibrosis, promoted cell proliferation, enhanced angiogenesis protein expression, and elevated the protein phosphorylation of ErK1/2, P38, and Akt, leading to decreased urinary frequency, nocturia, urgency, urgency incontinence, and post-voided residual urine volume, but increased voided urine volume and the maximal flow rate of postmenopausal participants. In conclusion, LiESWT attenuated inflammatory responses, increased angiogenesis, and promoted proliferation and differentiation, thereby improved OAB symptoms, thereafter promoting social activity and the quality of life of postmenopausal participants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse
Sigma-Aldrich
Anti-VEGF 165b Antibody, clone 56/1, clone 56/1, 1 mg/mL, from mouse