Skip to Content
Merck
  • Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis.

Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis.

Cell metabolism (2018-05-15)
Tamara Suhm, Jayasankar Mohanakrishnan Kaimal, Hannah Dawitz, Carlotta Peselj, Anna E Masser, Sarah Hanzén, Matevž Ambrožič, Agata Smialowska, Markus L Björck, Peter Brzezinski, Thomas Nyström, Sabrina Büttner, Claes Andréasson, Martin Ott
ABSTRACT

Cellular proteostasis is maintained via the coordinated synthesis, maintenance, and breakdown of proteins in the cytosol and organelles. While biogenesis of the mitochondrial membrane complexes that execute oxidative phosphorylation depends on cytoplasmic translation, it is unknown how translation within mitochondria impacts cytoplasmic proteostasis and nuclear gene expression. Here we have analyzed the effects of mutations in the highly conserved accuracy center of the yeast mitoribosome. Decreased accuracy of mitochondrial translation shortened chronological lifespan, impaired management of cytosolic protein aggregates, and elicited a general transcriptional stress response. In striking contrast, increased accuracy extended lifespan, improved cytosolic aggregate clearance, and suppressed a normally stress-induced, Msn2/4-dependent interorganellar proteostasis transcription program (IPTP) that regulates genes important for mitochondrial proteostasis. Collectively, the data demonstrate that cytosolic protein homeostasis and nuclear stress signaling are controlled by mitochondrial translation efficiency in an inter-connected organelle quality control network that determines cellular lifespan.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Yeast Synthetic Drop-out Medium Supplements, without histidine
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Anti-DNP antibody produced in rabbit, whole antiserum
SKU
Pack Size
Availability
Price
Quantity