Skip to Content
Merck
  • Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis.

Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis.

Journal of food science (2015-08-13)
Jin-Man Kim, Ha-Jung Kim, Jung-Min Park
ABSTRACT

This study assessed the potential application of gas chromatography (GC) in detecting milk fat (MF) adulteration with vegetable oils and animal fats and of characterizing samples by fat source. One hundred percent pure MF was adulterated with different vegetable oils and animal fats at various concentrations (0%, 10%, 30%, 50%, 70%, and 90%). GC was used to obtain the fatty acid (FA) profiles, triacylglycerol (TG) contents, and cholesterol contents. The pure MF and the adulterated MF samples were discriminated based on the total concentrations of saturated FAs and on the 2 major FAs (oleic acid [C18:1n9c] and linoleic acid [C18:2n6c], TGs [C52 and C54], and cholesterol contents using statistical analysis to compared difference. These bio-markers enabled the detection of as low as 10% adulteration of non-MF into 100% pure MF. The study demonstrated the high potential of GC to rapidly detect MF adulteration with vegetable and animal fats, and discriminate among commercial butter and milk products according to the fat source. These data can be potentially useful in detecting foreign fats in these butter products. Furthermore, it is important to consider that several individual samples should be analyzed before coming to a conclusion about MF authenticity.

MATERIALS
Product Number
Brand
Product Description

SAFC
Cholesterol, Plant-Derived, SyntheChol®
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexane, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Boron trifluoride, electronic grade, ≥99.99%
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
5-α-Cholestane, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, from lanolin, ≥99.0% (GC)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O