Skip to Content
Merck
  • Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

Acta biomaterialia (2012-12-15)
Laurence Glennon-Alty, Rachel Williams, Simon Dixon, Patricia Murray
ABSTRACT

Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(acrylic acid), average Mv ~1,250,000
Sigma-Aldrich
Poly(acrylic acid), average Mv ~3,000,000
Sigma-Aldrich
Poly(acrylic acid), average Mv ~450,000
Sigma-Aldrich
Poly(acrylic acid)
Sigma-Aldrich
Poly(acrylic acid), average Mv ~4,000,000
Supelco
Poly(acrylic acid), analytical standard, average Mn 130,000 (Typical)
Sigma-Aldrich
Poly(acrylic acid) solution, average Mw ~2,000, 50 wt. % in H2O, electronic grade
Sigma-Aldrich
Poly(acrylic acid) solution, average Mw ~250,000, 35 wt. % in H2O
Sigma-Aldrich
Poly(acrylic acid) solution, average Mw ~100,000, 35 wt. % in H2O