Skip to Content
Merck

Mechanisms of nitrite accumulation occurring in soilnitrification.

Chemosphere (2003-04-12)
Q R Shen, W Ran, Z H Cao
ABSTRACT

Because low concentration of nitrite could be toxic to biological systems and high amounts of nitrite have been observed in a river of northern China since 1990, nitrite from agricultural soil sources should be investigated. In this paper, effects of levels of ammonium-N (NH4+-N), soil pH and nitrification inhibitors on NO2- accumulation, and duration of nitrite in soils were studied. Application of 11.2 mg of nitrapyrin kg(-1) soil or 11.2 mg of sodium azide kg(-1) soil dramatically suppressed nitrite occurrence. Within all incubation times and at all levels of ammonium-N input, we did not detect any measurable NO2-N accumulation in samples of Yellow-brown earth (pH 5.67), but observed huge accumulation in the 2 alkaline soils, Fluvo-aquic loam (pH 7.89) and Fluvo-aquic sand (pH 8.20). The concentrations of nitrite in both alkaline soils were related to ammonium-N levels. The effect of pH on nitrite accumulation was demonstrated by using slurries of Fluvo-aquic sand under continuous aeration and buffers of different pH. Data showed that nitrite concentration increased with the elevated pH, yet that ammonia oxidizers from the original soil (pH 8.2) could adapt to the new medium of low pH (pH 5.35). Dynamic changes of nitrite in soils amended with different rates of nitrite-N were also measured in 6 days. Thereby, we concluded that nitrite was unstable in acid soils, but durable in alkaline soils. The authors suggested that NO2- accumulation in field soils and its subsequent environmental impact should receive more attention.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Chloro-6-(trichloromethyl)pyridine, ≥98%
Supelco
Nitrapyrin, PESTANAL®, analytical standard