Skip to Content
Merck
  • Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity.

Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity.

Nature communications (2018-10-03)
Lulu Yao, Teddy Grand, Jesse E Hanson, Pierre Paoletti, Qiang Zhou
ABSTRACT

Selective disruption of synaptic drive to inhibitory neurons could contribute to the pathophysiology of various brain disorders. We have previously identified a GluN2A-selective positive allosteric modulator, GNE-8324, that selectively enhances N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in inhibitory but not excitatory neurons. Here, we demonstrate that differences in NMDAR subunit composition do not underlie this selective potentiation. Rather, a higher ambient glutamate level in the synaptic cleft of excitatory synapses on inhibitory neurons is a key factor. We show that increasing expression of glutamate transporter 1 (GLT-1) eliminates GNE-8324 potentiation in inhibitory neurons, while decreasing GLT-1 activity enables potentiation in excitatory neurons. Our results reveal an unsuspected difference between excitatory synapses onto different neuronal types, and a more prominent activation of synaptic NMDARs by ambient glutamate in inhibitory than excitatory neurons. This difference has implications for tonic NMDAR activity/signaling and the selective modulation of inhibitory neuron activity to treat brain disorders.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
NAB-14, ≥98% (HPLC)
Sigma-Aldrich
Anti-GAPDH antibody, Mouse monoclonal, clone GAPDH-71.1, purified from hybridoma cell culture