Skip to Content
Merck
  • A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease.

A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease.

PloS one (2013-02-06)
Vadivel Parthsarathy, Paula L McClean, Christian Hölscher, Mark Taylor, Claire Tinker, Glynn Jones, Oleg Kolosov, Elisa Salvati, Maria Gregori, Massimo Masserini, David Allsop
ABSTRACT

Previously, we have developed a retro-inverso peptide inhibitor (RI-OR2, rGffvlkGr) that blocks the in vitro formation and toxicity of the Aβ oligomers which are thought to be a cause of neurodegeneration and memory loss in Alzheimer's disease. We have now attached a retro-inverted version of the HIV protein transduction domain 'TAT' to RI-OR2 to target this new inhibitor (RI-OR2-TAT, Ac-rGffvlkGrrrrqrrkkrGy-NH(2)) into the brain. Following its peripheral injection, a fluorescein-labelled version of RI-OR2-TAT was found to cross the blood brain barrier and bind to the amyloid plaques and activated microglial cells present in the cerebral cortex of 17-months-old APPswe/PS1ΔE9 transgenic mice. Daily intraperitoneal injection of RI-OR2-TAT (at 100 nmol/kg) for 21 days into 10-months-old APPswe/PS1ΔE9 mice resulted in a 25% reduction (p<0.01) in the cerebral cortex of Aβ oligomer levels, a 32% reduction (p<0.0001) of β-amyloid plaque count, a 44% reduction (p<0.0001) in the numbers of activated microglial cells, and a 25% reduction (p<0.0001) in oxidative damage, while the number of young neurons in the dentate gyrus was increased by 210% (p<0.0001), all compared to control APPswe/PS1ΔE9 mice injected with vehicle (saline) alone. Our data suggest that oxidative damage, inflammation, and inhibition of neurogenesis are all a downstream consequence of Aβ aggregation, and identify a novel brain-penetrant retro-inverso peptide inhibitor of Aβ oligomer formation for further testing in humans as a potential disease-modifying treatment for Alzheimer's disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-8-Oxoguanine Antibody, clone 483.15, ascites fluid, clone 483.15, Chemicon®
Sigma-Aldrich
Sodium barbiturate, ≥97.0% (T)