Skip to Content
Merck

Effect of cholesterol reduction on receptor signaling in neurons.

The Journal of biological chemistry (2015-09-16)
Kenji Fukui, Heather A Ferris, C Ronald Kahn
ABSTRACT

Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-β-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20-31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-β-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-β was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
HEPES
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
MISSION® esiRNA, targeting human SREBF2
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
SAFC
HEPES