Skip to Content
Merck
  • Structural characterization and function determination of a nonspecific carboxylate esterase from the amidohydrolase superfamily with a promiscuous ability to hydrolyze methylphosphonate esters.

Structural characterization and function determination of a nonspecific carboxylate esterase from the amidohydrolase superfamily with a promiscuous ability to hydrolyze methylphosphonate esters.

Biochemistry (2014-05-17)
Dao Feng Xiang, Desigan Kumaran, Subramanyam Swaminathan, Frank M Raushel
ABSTRACT

The uncharacterized protein Rsp3690 from Rhodobacter sphaeroides is a member of the amidohydrolase superfamily of enzymes. In this investigation the gene for Rsp3690 was expressed in Escherichia coli and purified to homogeneity, and the three-dimensional structure was determined to a resolution of 1.8 Å. The protein folds as a distorted (β/α)8-barrel, and the subunits associate as a homotetramer. The active site is localized to the C-terminal end of the β-barrel and is highlighted by the formation of a binuclear metal center with two manganese ions that are bridged by Glu-175 and hydroxide. The remaining ligands to the metal center include His-32, His-34, His-207, His-236, and Asp-302. Rsp3690 was shown to catalyze the hydrolysis of a wide variety of carboxylate esters, in addition to organophosphate and organophosphonate esters. The best carboxylate ester substrates identified for Rsp3690 included 2-naphthyl acetate (kcat/Km = 1.0 × 10(5) M(-1) s(-1)), 2-naphthyl propionate (kcat/Km = 1.5 × 10(5) M(-1) s(-1)), 1-naphthyl acetate (kcat/Km = 7.5 × 10(3) M(-1) s(-1)), 4-methylumbelliferyl acetate (kcat/Km = 2.7 × 10(3) M(-1) s(-1)), 4-nitrophenyl acetate (kcat/Km = 2.3 × 10(5) M(-1) s(-1)), and 4-nitrophenyl butyrate (kcat/Km = 8.8 × 10(5) M(-1) s(-1)). The best organophosphonate ester substrates included ethyl 4-nitrophenyl methylphosphonate (kcat/Km = 3.8 × 10(5) M(-1) s(-1)) and isobutyl 4-nitrophenyl methylphosphonate (kcat/Km = 1.1 × 10(4) M(-1) s(-1)). The (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate was hydrolyzed 10 times faster than the less toxic (RP)-enantiomer. The high inherent catalytic activity of Rsp3690 for the hydrolysis of the toxic enantiomer of methylphosphonate esters make this enzyme an attractive target for directed evolution investigations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Nitrophenol, spectrophotometric grade
Sigma-Aldrich
4-Nitrophenol, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
4-Nitrophenol, PESTANAL®, analytical standard
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Supelco
Acetaminophen Related Compound F, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
4′-Hydroxyacetophenone, analytical standard
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
4′-Hydroxyacetophenone, 99%
Sigma-Aldrich
4-Nitrophenol solution, 10 mM
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Supelco
Acetaminophen Related Compound J, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Sigma-Aldrich
4′-Chloroacetanilide, 97%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Millipore
Bifido Selective Supplement B, suitable for microbiology