Skip to Content
Merck
  • Suppression of problematic compound oligomerization by cosolubilization of nondetergent sulfobetaines.

Suppression of problematic compound oligomerization by cosolubilization of nondetergent sulfobetaines.

ChemMedChem (2015-03-12)
Yumiko Mizukoshi, Koh Takeuchi, Misa Arutaki, Takeshi Takizawa, Hiroyuki Hanzawa, Hideo Takahashi, Ichio Shimada
ABSTRACT

Numerous small organic compounds exist in equilibrium among monomers, soluble oligomers, and insoluble aggregates in aqueous solution. Compound aggregation is a major reason for false positives in drug screening, and even soluble oligomers can interfere with structural and biochemical analyses. However, an efficient way to manage the equilibrium of aggregation-prone compounds, especially those involved with soluble oligomers, has not been established. In this study, solution NMR spectroscopy was used as a suitable technique to detect compound oligomers in equilibrium, and it was demonstrated that cosolubilization of nondetergent sulfobetaines (NDSBs) can largely suppress compound oligomerization and aggregation by shifting the equilibrium toward the monomers. The rotational correlation time was obtained from the ratio of the selective and nonselective longitudinal NMR relaxation times, which directly and quantitatively reflected the apparent sizes of the compounds in the equilibrium. The rotational correlation time of the aggregation-prone compound SKF86002 (1 mM) was substantially reduced from 0.31 to 0.23 ns by cosolubilization of 100 mM NDSB195. NDSB cosolubilization allowed us to perform successful structural and biochemical experiments with substantially fewer artifacts, which represents a strategy to directly resolve the problematic oligomerization and aggregation of compounds.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Clotrimazole, European Pharmacopoeia (EP) Reference Standard
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Supelco
Arginine Hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Clotrimazole, United States Pharmacopeia (USP) Reference Standard
Supelco
Clotrimazole, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Arginine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
Benzyl benzoate, analytical standard
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D
Supelco
Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material
Arginine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
USP
Benzyl benzoate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Clotrimazole for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
SAFC
L-Arginine monohydrochloride
Sigma-Aldrich
Benzyl benzoate, tested according to Ph. Eur.
Sigma-Aldrich
Benzyl benzoate, natural, ≥99%, FG
Sigma-Aldrich
Benzyl benzoate, ≥99%, FCC, FG
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)