Skip to Content
Merck
  • Human Umbilical Cord Blood Serum-derived α-Secretase: Functional Testing in Alzheimer's Disease Mouse Models.

Human Umbilical Cord Blood Serum-derived α-Secretase: Functional Testing in Alzheimer's Disease Mouse Models.

Cell transplantation (2018-03-22)
Ahsan Habib, Huayan Hou, Takashi Mori, Jun Tian, Jin Zeng, Shengnuo Fan, Brian Giunta, Paul R Sanberg, Darrell Sawmiller, Jun Tan
ABSTRACT

Alzheimer's disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer's disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer's disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-NeuN Antibody, serum, from guinea pig
Sigma-Aldrich
Anti-Alzheimer Precursor Protein A4 Antibody, clone 22C11, Biotin Conj. | MAB348B, clone 22C11, from mouse, biotin conjugate
Sigma-Aldrich
Anti-Tau phospho Threonine 231 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Amyloid Precursor Protein, C-Terminal (751-770) Rabbit pAb, liquid, Calbiochem®
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid