- Glutathione S-transferase alpha 1 risk polymorphism and increased bilateral thalamus mean diffusivity in schizophrenia.
Glutathione S-transferase alpha 1 risk polymorphism and increased bilateral thalamus mean diffusivity in schizophrenia.
Oxidative damage in brain cells is one of the factors hypothesized to be involved in the pathogenesis of schizophrenia. Glutathione S-transferase (GST) A1*B polymorphism, a genotype associated with a higher risk of oxidative damage, is associated with increased frequency of schizophrenia diagnosis. Thus, here we studied Glutathione S-transferase (GST) A1 polymorphism and diffusion tensor imaging-mean diffusivity (MD) data on deep grey matter brain structures in 56 patients with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR) schizophrenia. Clinical diagnosis and psychopathological symptom severity were assessed by using the Structured Clinical Interview for DSM-IV-TR (SCID-P) and the Scales for Assessment of Positive and Negative Symptoms (SAPS and SANS). Results confirmed that patients with schizophrenia who were carriers of the GSTA1 *B risk allele had an increased MD in bilateral thalami and increased severity of auditory and global hallucinations in comparison with non-B carriers. Thus, oxidative stress associated factors may be implicated in specific mechanisms of schizophrenia such as altered microstructure of the thalami and specific psychopathological features of auditory hallucinations.