Skip to Content
Merck
  • Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography.

Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography.

Journal of separation science (2015-05-07)
Md Shahruzzaman, Makoto Takafuji, Hirotaka Ihara
ABSTRACT

The amphiphilic polymer-grafted silica was newly prepared as a stationary phase in high-performance liquid chromatography. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1-bromooctadecane. The obtained poly(octadecylpyridinium)-grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer-Emmett-Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)-grafted silica as an amphiphilic polymer stationary phase in high-performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl-bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl-bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
1-Bromooctadecane, ≥97.0%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), SAJ first grade, ≥98.0%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), recrystallized from methanol, 99%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
4-Vinylpyridine, contains 100 ppm hydroquinone as inhibitor, 95%
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000