Skip to Content
Merck
  • Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells.

Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells.

Environmental toxicology and chemistry (2014-09-02)
Jang Han Lee, Jae Eun Ju, Byung Il Kim, Pyo June Pak, Eun-Kyung Choi, Hoi-Seon Lee, Namhyun Chung
ABSTRACT

Variable sizes of nanoparticles, ranging from nano to micro scale, are of toxicological interest. In the present study, the authors hypothesized that, in addition to the size, the shape of iron oxide (Fe2O3) nanoparticles is a major factor that contributes to particle cytotoxicity. Cytotoxicity to mouse macrophage cells (RAW 264.7) was investigated using 3 different particles: micro-sized Fe2 O3 (M-Fe2O3), nano-sized Fe2O3 (N-Fe2O3), and rod-shaped Fe2O3 (R-Fe2O3). Whereas M-Fe2O3 and N-Fe2O3 were located in the vacuole as aggregates, R-Fe2 O3 was often spread throughout the cytoplasm. The extent of cytotoxicity measured by the water soluble tetrazolium (WST-1) assay was in the order R-Fe2O3 ≈ N-Fe2O3 > M-Fe2O3, whereas the extent revealed by the lactate dehydrogenase assay was in the order R-Fe2O3 > N-Fe2O3 ≈ M-Fe2 O3. In addition, the degree of tumor necrosis factor-α and reactive oxygen species (ROS) production was in the order of R-Fe2O3  > N-Fe2 O3 > M-Fe2O3. In addition, a much higher extent of necrosis was associated with the presence of R-Fe2O3. These results suggest that the higher degree of necrosis due to R-Fe2O3 is correlated with both the higher degree of membrane damage and ROS production by R-Fe2O3 compared with the results of the other Fe2O3 particles. These results also showed that the degree of cytotoxicity of nanoparticles should be evaluated based on shape as well as size, because changes in shape and size are accompanied by alterations in surface area, which relate closely to cytotoxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Glutaraldehyde solution, SAJ first grade, 20.0-26.0%
Sigma-Aldrich
Iron(III) oxide, hydrated, catalyst grade, 30-50 mesh
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Iron(III) oxide, dispersion, nanoparticles, ≤110 nm particle size, 15 wt. % in ethanol
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
D.E.R. 332, used as embedding medium
Supelco
(±)-Propylene oxide, analytical standard
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
Osmium tetroxide, ACS reagent, ≥98.0%
Sigma-Aldrich
Osmium tetroxide, ReagentPlus®, 99.8%
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Iron(III) oxide, SAJ first grade, ≥98.0%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence