Skip to Content
Merck
  • Ozonation and peroxone oxidation of benzophenone-3 in water: effect of operational parameters and identification of intermediate products.

Ozonation and peroxone oxidation of benzophenone-3 in water: effect of operational parameters and identification of intermediate products.

The Science of the total environment (2012-11-29)
Pablo Gago-Ferrero, Kristof Demeestere, M Silvia Díaz-Cruz, Damià Barceló
ABSTRACT

The goal of this study was to bring forward new data and insights with respect to the effect of operational variables and reaction pathways during ozonation and peroxone oxidation of the UV filter compound benzophenone-3 (BP3) in water. A systematic parameter study, investigating the effect of the ozone inlet concentration, temperature, pH, H(2)O(2) and t-butanol addition in a lab-scale bubble reactor, showed the promising potential of ozonation towards BP3 degradation. pH showed to be a major process parameter, with half-life times (5.1-15.0 min) being more than two times shorter at pH10 compared to neutral and acid conditions. This indicates the important role of hydroxyl radicals as supported by the addition of H(2)O(2) and t-butanol as HO promoter and scavenger, respectively. Ozonation intermediate products were identified by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC-QqTOF-MS/MS). Demethylation and non-selective HO attack proved to be the major reaction mechanisms. Where available, identified intermediates were confirmed using analytical standards, and concentration profiles along the ozonation process were determined through selective targeted MS/MS analysis. Benzophenone-1 (BP1), also being a UV-filter compound, and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB) revealed to be the major BP3 degradation products, showing a maximum concentration at about the half-life time of BP3.

MATERIALS
Product Number
Brand
Product Description

Supelco
Oxybenzone, analytical standard
Supelco
Oxybenzone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Hydroxy-4-methoxybenzophenone, 98%