Skip to Content
Merck
  • Sustainable production of pectin from lime peel by high hydrostatic pressure treatment.

Sustainable production of pectin from lime peel by high hydrostatic pressure treatment.

Food chemistry (2012-11-06)
Mahsa Naghshineh, Karsten Olsen, Constantinos A Georgiou
ABSTRACT

The application of high hydrostatic pressure technology for enzymatic extraction of pectin was evaluated. Cellulase and xylanase under five different combinations (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel. Extraction yield, galacturonic acid (GalA) content, average molecular weight (M(w,ave)), intrinsic viscosity [η](w), and degree of esterification (DE) were compared to those parameters obtained for pectins extracted using acid and aqueous processes. Pressure level, type and concentration of enzyme significantly (p<0.05) influenced yield and DE of pectin. Enzyme and high pressure extraction resulted in yields which were significantly (p<0.05) higher than those using acid and aqueous extraction. Although pressure-induced enzymatic treatment improves pectin yield, it does not have any significant effect on M(w,ave) and [η](w) of pectin extracts indicating the potential of high pressure treatment for enzymatic pectin production as a novel and sustainable process.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calcium oxide, SAJ first grade, ≥98.0%
Sigma-Aldrich
Calcium oxide, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium oxide, 99.995% trace metals basis
Sigma-Aldrich
Calcium oxide, ReagentPlus®, 99.9% trace metals basis
Sigma-Aldrich
Calcium oxide, nanopowder, <160 nm particle size (BET), 98%
Sigma-Aldrich
Calcium oxide, reagent grade