- An asymmetric synthesis of 1,2,4-trioxane anticancer agents via desymmetrization of peroxyquinols through a Brønsted acid catalysis cascade.
An asymmetric synthesis of 1,2,4-trioxane anticancer agents via desymmetrization of peroxyquinols through a Brønsted acid catalysis cascade.
Journal of the American Chemical Society (2012-08-09)
David M Rubush, Michelle A Morges, Barbara J Rose, Douglas H Thamm, Tomislav Rovis
PMID22871165
ABSTRACT
The desymmetrization of p-peroxyquinols using a Brønsted acid-catalyzed acetalization/oxa-Michael cascade was achieved in high yields and selectivities for a variety of aliphatic and aryl aldehydes. Mechanistic studies suggest that the reaction proceeds through a dynamic kinetic resolution of the peroxy hemiacetal intermediate. The resulting 1,2,4-trioxane products were derivatized and show potent cancer cell-growth inhibition.
MATERIALS
Product Number
Brand
Product Description
SKU
Pack Size
Availability
Price
Quantity
SKU
Pack Size
Availability
Price
Quantity
SKU
Pack Size
Availability
Price
Quantity
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
8-Quinolinol, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (perchloric acid titration)
SKU
Pack Size
Availability
Price
Quantity