Skip to Content
Merck

Structural insights into neuronal K+ channel-calmodulin complexes.

Proceedings of the National Academy of Sciences of the United States of America (2012-08-08)
Karen Mruk, Shiven M D Shandilya, Robert O Blaustein, Celia A Schiffer, William R Kobertz
ABSTRACT

Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that directly binds to and modulates a wide variety of ion channels. Despite the large repository of high-resolution structures of CaM bound to peptide fragments derived from ion channels, there is no structural information about CaM bound to a fully folded ion channel at the plasma membrane. To determine the location of CaM docked to a functioning KCNQ K(+) channel, we developed an intracellular tethered blocker approach to measure distances between CaM residues and the ion-conducting pathway. Combining these distance restraints with structural bioinformatics, we generated an archetypal quaternary structural model of an ion channel-CaM complex in the open state. These models place CaM close to the cytoplasmic gate, where it is well positioned to modulate channel function.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetraethylammonium chloride hydrate
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)
Sigma-Aldrich
Tetraethylammonium bromide, reagent grade, 98%
Supelco
Tetraethylammonium hydroxide solution, ~1.0 M (CH3CH2)4NOH in H2O, electrochemical grade
Sigma-Aldrich
Tetraethylammonium chloride, BioUltra, for molecular biology, ≥99.0% (AT)
Supelco
Tetraethylammonium chloride, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Tetraethylammonium hydroxide solution, 20 wt. % in H2O
Sigma-Aldrich
Tetraethylammonium hydroxide solution, 35 wt. % in H2O
Sigma-Aldrich
Tetraethylammonium bromide, ReagentPlus®, 99%
Sigma-Aldrich
Tetraethylammonium hydroxide solution, ~25% in methanol (~1.5 M)