Skip to Content
Merck
  • The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons.

The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons.

Noro psikiyatri arsivi (2014-06-01)
Duygu Gezen-Ak, Erdinç Dursun, Selma Yilmazer
ABSTRACT

Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer's disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goat Anti-Mouse IgG Antibody, FITC conjugate, Species Adsorbed, 1.3 mg/mL, Chemicon®
Sigma-Aldrich
Milli-Mark® Pan Neuronal Marker, Milli-Mark Pan Neuronal Marker is an antibody targeting the Pan Neuronal Marker protein, validated for use in ICC, IHC, IF & IHC.