Skip to Content
Merck
  • Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

Impact of hydration state and molecular oxygen on the chemical stability of levothyroxine sodium.

Pharmaceutical development and technology (2013-12-04)
Mazen Lee Hamad, William Engen, Kenneth R Morris
ABSTRACT

Levothyroxine sodium is an important medication used primarily for treating patients with hypothyroidism. Levothyroxine sodium tablets have been recalled many times since their 1955 introduction to the US market. These recalls resulted from the failure of lots to meet their content uniformity and potency specifications. The purpose of this study is to test the hypothesis that the chemical stability of levothyroxine sodium pentahydrate is compromised upon exposing the dehydrated substance to molecular oxygen. The impact of temperature, oxygen and humidity storage conditions on the stability of solid-state levothyroxine sodium was examined. After exposure to these storage conditions for selected periods of time, high performance liquid chromatography (HPLC) was used to quantify the formation of impurities. The results showed that levothyroxine sodium samples degraded significantly over a 32-day test period when subjected to dry conditions in the presence of molecular oxygen. However, dehydrated samples remained stable when oxygen was removed from the storage chamber. Furthermore, hydrated samples were stable in the presence of oxygen and in the absence of oxygen. These results reveal conditions that will degrade levothyroxine sodium pentahydrate and elucidate measures that can be taken to stabilize the drug substance.

MATERIALS
Product Number
Brand
Product Description

Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
L-Tyrosine, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Millipore
Acetonitrile solution, suitable for HPLC, acetonitrile:water 5:95% (v/v), 10 mM Ammoniumbicarbonate, pH 10,0
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
3-Iodo-L-tyrosine
SAFC
L-Tyrosine
Supelco
Methanol, analytical standard
Sigma-Aldrich
L-Tyrosine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Tyrosine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets