Skip to Content
Merck
  • Feasibility of ultra-high performance liquid and gas chromatography coupled to mass spectrometry for accurate determination of primary and secondary phthalate metabolites in urine samples.

Feasibility of ultra-high performance liquid and gas chromatography coupled to mass spectrometry for accurate determination of primary and secondary phthalate metabolites in urine samples.

Analytica chimica acta (2014-12-04)
Laura Herrero, Sagrario Calvarro, Mario A Fernández, Jesús Eduardo Quintanilla-López, María José González, Belén Gómara
ABSTRACT

Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL(-1) and from 0.06 to 0.49 pg μL(-1) in GC-MS and UHPLC-MS(2), respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC-MS) and accuracy. But some advantages of the UHPLC-MS(2) method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC-MS(2) method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L(-1)), followed by MiBP (23.3 μg L(-1)), 5cx-MEPP (22.5 μg L(-1)) and MBP (19.3μgL(-1)). MMP (6.99 μg L(-1)), 5oxo-MEHP (6.15 μg L(-1)), 5OH-MEHP (5.30 μg L(-1)) and MEHP (4.40 μg L(-1)) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L(-1)). These data are within the same order of magnitude as those found in other similar populations.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium acetate solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium phosphate monobasic monohydrate, BioXtra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Sodium phosphate monobasic monohydrate, BioReagent, suitable for electrophoresis, 98.0-102.0%
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Supelco
Acetic acid, analytical standard
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
SAFC
Acetic acid, glacial
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Sodium phosphate monobasic monohydrate, ACS reagent, ≥98%
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
mono-Methyl phthalate, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Ultrapure Acetonitrile
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard