Skip to Content
Merck
  • Vitamin D receptor expression in human muscle tissue decreases with age.

Vitamin D receptor expression in human muscle tissue decreases with age.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2004-02-19)
H A Bischoff-Ferrari, M Borchers, F Gudat, U Dürmüller, H B Stähelin, W Dick
ABSTRACT

Intracellular 1,25-dihydroxyvitamin D receptor (VDR) is expressed in human skeletal muscle tissue. However, it is unknown whether VDR expression in vivo is related to age or vitamin D status, or whether VDR expression differs between skeletal muscle groups. We investigated these factors and their relation to 1,25-dihydroxyvitamin D receptor (VDR) expression in freshly removed human muscle tissue. We investigated biopsy specimens of the gluteus medius taken at surgery from 20 female patients undergoing total hip arthroplasty (mean age, 71.6 +/- 14.5; 72% > 65 years) and biopsy specimens of the transversospinalis muscle taken at surgery from 12 female patients with spinal operations (mean age, 55.2 +/- 19.6; 28% > 65 years). The specimens were obtained by immunohistological staining of the VDR using a monoclonal rat antibody to the VDR (Clone no. 9A7). Quantitative VDR expression (number of VDR positive nuclei) was assessed by counting 500 nuclei per specimen and person. Serum concentrations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were assessed at day of admission to surgery. All muscle biopsy specimens stained positive for VDR. In the univariate analyses, increased age was associated with decreased VDR expression (r = 0.5: p = 0.004), whereas there were no significant correlations between VDR expression and 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D levels. VDR expression did not differ between patients with hip and spinal surgery. In the multivariate analysis, older age was a significant predictor of decreased VDR expression after controlling biopsy location (gluteus medius or the transversospinalis muscle), and 25-hydroxyvitamin D levels (linear regression analysis: beta-estimate = -2.56; p = 0.047). Intranuclear immunostaining of the VDR was present in muscle biopsy specimens of all orthopedic patients. Older age was significantly associated with decreased VDR expression, independent of biopsy location and serum 25-hydroxyvitamin D levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ergocalciferol, 40,000,000 USP units/g
Sigma-Aldrich
Ergocalciferol, ≥98.0% (sum of enantiomers, HPLC)
Supelco
Ergocalciferol (Vitamin D2), Pharmaceutical Secondary Standard; Certified Reference Material
Ergocalciferol, European Pharmacopoeia (EP) Reference Standard