Skip to Content
Merck
  • GABAA receptor modulation by piperine and a non-TRPV1 activating derivative.

GABAA receptor modulation by piperine and a non-TRPV1 activating derivative.

Biochemical pharmacology (2013-04-30)
Sophia Khom, Barbara Strommer, Angela Schöffmann, Juliane Hintersteiner, Igor Baburin, Thomas Erker, Thomas Schwarz, Christoph Schwarzer, Janine Zaugg, Matthias Hamburger, Steffen Hering
ABSTRACT

The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA) type A (GABA(A)) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural effects were investigated. GABA(A) receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation of GABA-induced chloride currents (I(GABA)) by piperine and SCT-66 and activation of TRPV1 was studied using the two-microelectrode-voltage-clamp technique and fast perfusion. Their effects on explorative behaviour, thermoregulation and seizure threshold were analysed in mice. Piperine acted with similar potency on all GABA(A) receptor subtypes (EC₅₀ range: 42.8±7.6 μM (α₂β₂)-59.6±12.3 μM (α₃β₂). I(GABA) modulation by piperine did not require the presence of a γ(2S)-subunit, suggesting a binding site involving only α and β subunits. I(GABA) activation was slightly more efficacious on receptors formed from β(2/3) subunits (maximal I(GABA) stimulation through α₁β₃ receptors: 332±64% and α₁β₂: 271±36% vs. α₁β₁: 171±22%, p<0.05) and α₃-subunits (α₃β₂: 375±51% vs. α₅β₂:136±22%, p<0.05). Replacing the piperidine ring by a N,N-diisobutyl residue (SCT-66) prevents interactions with TRPV1 and simultaneously increases the potency and efficiency of GABA(A) receptor modulation. SCT-66 displayed greater efficacy on GABA(A) receptors than piperine, with different subunit-dependence. Both compounds induced anxiolytic, anticonvulsant effects and reduced locomotor activity; however, SCT-66 induced stronger anxiolysis without decreasing body temperature and without the proconvulsive effects of TRPV1 activation and thus may serve as a scaffold for the development of novel GABA(A) receptor modulators.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Piperine, ≥95%, FG
Sigma-Aldrich
Piperine, ≥97%