Skip to Content
Merck

Optical extinction in a single layer of nanorods.

Physical review letters (2012-10-23)
Petru Ghenuche, Grégory Vincent, Marine Laroche, Nathalie Bardou, Riad Haïdar, Jean-Luc Pelouard, Stéphane Collin
ABSTRACT

We demonstrate that almost 100% of incident photons can interact with a monolayer of scatterers in a symmetrical environment. Nearly perfect optical extinction through free-standing transparent nanorod arrays has been measured. The sharp spectral opacity window, in the form of a characteristic Fano resonance, arises from the coherent multiple scattering in the array. In addition, we show that nanorods made of absorbing material exhibit a 25-fold absorption enhancement per unit volume compared to unstructured thin film. These results open new perspectives for light management in high-Q, low volume dielectric nanostructures, with potential applications in optical systems, spectroscopy, and optomechanics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silicon nitride, predominantly β-phase, ≤10micron primary particle size
Sigma-Aldrich
Silicon nitride, predominantly α-phase, ≤10 micron
Sigma-Aldrich
Silicon nitride, powder, ≥99.9% trace metals basis
Sigma-Aldrich
Silicon nitride, nanopowder, <50 nm particle size (spherical), ≥98.5% trace metals basis