Skip to Content
Merck
  • Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors.

Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors.

Bioorganic & medicinal chemistry (2012-02-01)
Shuo Li, Yu Wang, Shan Wang, Ji Zhang, Shi-Fei Wu, Bo-Lin Wang, Wen Zhu, Xiao-Qi Yu
ABSTRACT

Several 1,4,7,10-tetraazacyclododecane (cyclen)-based linear (3a-c) and cross-linked (8a-d) polymers containing biodegradable ester or disulfide bonds were described. These polymeric compounds were prepared by ring-opening polymerization from various diol glycidyl ethers. The molecular weights of the title polymers were measured by GPC. Agarose gel retardation assays showed that these compounds have good DNA-binding ability and can completely retard plasmid DNA (pDNA) at weight ratio of 20 for linear polymers and 1.2 for cross-linked polymers. The degradation of these polymers was confirmed by GPC. The formed polyplexes have appropriate sizes around 400 nm and zeta-potential values about 15-40 mV. The cytotoxicities of 8 assayed by MTT are much lower than that of 25 KDa PEI. In vitro transfection toward A549 and 293 cells showed that the transfection efficiency (TE) of 8c-DNA polyplex is close to that of 25 kDa PEI at 8c/DNA weight ratio of 4. Structure-activity relationships (SAR) of these linear and cross-linked polymers were discussed in their DNA-binding, cytotoxicity, and transfection studies. In addition, in the presence of serum, the TE of 8/DNA polyplexes could be improved by introducing chloroquine or Ca(2+) to pretreated cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cyclen, 97%