Accéder au contenu
Merck

Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells.

Oncotarget (2016-05-26)
Snider Desir, Elizabeth L Dickson, Rachel I Vogel, Venugopal Thayanithy, Phillip Wong, Deanna Teoh, Melissa A Geller, Clifford J Steer, Subbaya Subramanian, Emil Lou
RÉSUMÉ

In this study, we demonstrated that hypoxic conditions stimulated an increase in tunneling nanotube (TNT) formation in chemoresistant ovarian cancer cells (SKOV3, C200).We found that suppressing the mTOR pathway using either everolimus or metformin led to suppression of TNT formation in vitro, verifying TNTs as a potential target for cancer-directed therapy. Additionally, TNT formation was detected in co-cultures including between platinum-resistant SKOV3 cells, between SKOV3 cells and platinum-chemosensitive A2780 cells, and between SKOV3 cells cultured with benign ovarian epithelial (IOSE) cells; these findings indicate that TNTs are novel conduits for malignant cell interactions and tumor cell interactions with other cells in the microenvironment. When chemoresistant C200 and parent chemosensitive A2780 cells were co-cultured, chemoresistant cells displayed a higher likelihood of TNT formation to each other than to chemosensitive malignant or benign epithelial cells. Hypoxia-induced TNT formation represents a potential mechanism for intercellular communication in ovarian cancer and other forms of invasive refractory cancers.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Monoclonal Anti-HIF-1α antibody produced in mouse, ~1 mg/mL, clone H1α67, purified immunoglobulin, buffered aqueous solution