- Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae.
Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae.
Insect glutathione S-transferases (GSTs) play essential roles in the detoxification of insecticides and other xenobiotic compounds. The cabbage white butterfly, Pieris rapae, is an economically important agricultural pest. In this study, 17 cDNA sequences encoding putative GSTs were identified in P. rapae. All cDNAs include a complete open reading frame and were designated PrGSTd1-PrGSTz2. Based on phylogenetic analysis, PrGSTs were divided into six classes (delta, epsilon, omega, sigma, theta and zeta). The exon-intron organizations of these PrGSTs were also analysed. Recombinant proteins of eight PrGSTs (PrGSTD1, PrGSTD2, PrGSTE1, PrGSTE2, PrGSTO1, PrGSTS1, PrGSTT1 and PrGSTZ1) were heterologously expressed in Escherichia coli, and all of these proteins displayed glutathione-conjugating activity towards 1-chloro-2,4-dinitrobenzene (CDNB). Expression patterns in various larval tissues, at different life stages, and following exposure to sublethal doses of abamectin, chlorantraniliprole or lambda-cyhalothrin were determined by reverse transcription-quantitative PCR. The results showed that PrGSTe3, PrGSTs1, PrGSTs2, and PrGSTs4 were mainly transcribed in the fat body, while PrGSTe2 was expressed predominantly in the Malpighian tubules. Four genes (PrGSTe2, PrGSTo4, PrGSTs4 and PrGSTt1) were mainly expressed in fourth-instar larvae, while others were ubiquitously expressed in egg, larval, pupa and/or adult stages. Abamectin treatment significantly upregulated ten genes (PrGSTd1, PrGSTd3, PrGSTe1, PrGSTe2, PrGSTo1, PrGSTo3, PrGSTs1, PrGSTs3, PrGSTs4 and PrGSTt1). Chlorantraniliprole and lambda-cyhalothrin treatment significantly upregulated nine genes (PrGSTd1, PrGSTd2, PrGSTe1, PrGSTe2, PrGSTe3, PrGSTs1, PrGSTs3, PrGSTs4 and PrGSTz1) and ten genes (PrGSTd1, PrGSTd3, PrGSTe1, PrGSTe2, PrGSTo1, PrGSTo2, PrGSTs1, PrGSTs2, PrGSTs3 and PrGSTz2), respectively. These GSTs are potentially involved in the detoxification of insecticides.