Accéder au contenu
Merck
  • Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy.

Mesenchymal stromal cell delivery of full-length tumor necrosis factor-related apoptosis-inducing ligand is superior to soluble type for cancer therapy.

Cytotherapy (2015-04-19)
ZhengQiang Yuan, Krishna K Kolluri, Elizabeth K Sage, Kate H C Gowers, Sam M Janes
RÉSUMÉ

Mesenchymal stromal cell (MSC) delivery of pro-apoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an attractive strategy for anticancer therapy. MSCs expressing full-length human TRAIL (flT) or its soluble form (sT) have previously been shown to be effective for cancer killing. However, a comparison between the two forms has never been performed, leaving it unclear which approach is most effective. This study addresses the issue for the possible clinical application of TRAIL-expressing MSCs in the future. MSCs were transduced with lentiviruses expressing flT or an isoleucine zipper-fused sT. TRAIL expression was examined and cancer cell apoptosis was measured after treatment with transduced MSCs or with MSC-derived soluble TRAIL. The transduction does not adversely affect cell phenotype. The sT-transduced MSCs (MSC-sT) secrete abundant levels of soluble TRAIL but do not present the protein on the cell surface. Interestingly, the flT-transduced MSCs (MSC-flT) not only express cell-surface TRAIL but also release flT into medium. These cells were examined for inducing apoptosis in 20 cancer cell lines. MSC-sT cells showed very limited effects. By contrast, MSC-flT cells demonstrated high cancer cell-killing efficiency. More importantly, MSC-flT cells can overcome some cancer cell resistance to recombinant TRAIL. In addition, both cell surface flT and secreted flT are functional for inducing apoptosis. The secreted flT was found to have higher cancer cell-killing capacity than either recombinant TRAIL or MSC-secreted sT. These observations demonstrate that MSC delivery of flT is superior to MSC delivery of sT for cancer therapy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Sodium Dodecyl Sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Sodium Dodecyl Sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Désoxycholate de sodium, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Désoxycholate de sodium, ≥97% (titration)
Sigma-Aldrich
Sodium Dodecyl Sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium Dodecyl Sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium Dodecyl Sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
SAFC
Désoxycholate de sodium
Supelco
Sodium Dodecyl Sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium Dodecyl Sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium Dodecyl Sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium Dodecyl Sulfate, BioXtra, ≥99.0% (GC)