Accéder au contenu
Merck

Placental fractalkine mediates adhesion of THP-1 monocytes to villous trophoblast.

Histochemistry and cell biology (2015-01-09)
Monika Siwetz, Monika Sundl, Dagmar Kolb, Ursula Hiden, Florian Herse, Berthold Huppertz, Martin Gauster
RÉSUMÉ

The chemokine fractalkine (CX3CL1) recently attracted increasing attention in the field of placenta research due to its dual nature, acting both as membrane-bound and soluble forms. While the membrane-bound form mediates flow-resistant adhesion of leukocytes to endothelial and epithelial cells via its corresponding receptor CX3CR1, the soluble form arises from metalloprotease-dependent shedding and bears chemoattractive activity for monocytes, natural killer cells and T cells. In human placenta, fractalkine is expressed at the apical microvillous plasma membrane of the syncytiotrophoblast, which may enable close physical contact with circulating maternal leukocytes. Based on these observations, we tested the hypothesis that fractalkine mediates adhesion of monocytes to the villous trophoblast. Forskolin-induced differentiation and syncytialization of the trophoblast cell line BeWo was accompanied with a substantial upregulation in fractalkine expression and led to increased adhesion of the monocyte cell line THP-1, which preferentially bound to syncytia. Blocking as well as silencing of the fractalkine receptor CX3CR1 proved involvement of the fractalkine/CX3CR1 system in adherence of THP-1 monocytes to villous trophoblast. Pre-incubation of THP-1 monocytes with human recombinant fractalkine as well as silencing of CX3CR1 expression in THP-1 monocytes significantly impaired their adherence to BeWo cells and primary term trophoblasts. The present study suggests fractalkine as another candidate among the panel of adhesion molecules enabling stable interaction between leukocytes and the syncytiotrophoblast.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Diméthylsulfoxyde, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Diméthylsulfoxyde, for molecular biology
Sigma-Aldrich
Diméthylsulfoxyde, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Diméthylsulfoxyde, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Forskoline, from Coleus forskohlii, ≥98% (HPLC), powder
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
Forskoline, For use in molecular biology applications
Sigma-Aldrich
Diméthylsulfoxyde, BioUltra, for molecular biology, ≥99.5% (GC)
SAFC
BIS-TRIS
Sigma-Aldrich
Diméthylsulfoxyde, anhydrous, ≥99.9%
Sigma-Aldrich
Diméthylsulfoxyde, PCR Reagent
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
3-Amino-9-ethylcarbazole, ≥95% (HPLC), powder
Sigma-Aldrich
3-Amino-9-ethylcarbazole, tablet
SAFC
BIS-TRIS
Sigma-Aldrich
Diméthylsulfoxyde, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
MISSION® esiRNA, targeting human CX3CL1
Sigma-Aldrich
MISSION® esiRNA, targeting human CX3CR1