Accéder au contenu
Merck

A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia.

Fitoterapia (2014-06-28)
Joseph A Lutz, Manish Kulshrestha, Dennis T Rogers, John M Littleton
RÉSUMÉ

The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration-response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nAChR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Eau, suitable for HPLC
Sigma-Aldrich
Eau, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Eau, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Eau, Deionized
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Eau, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Eau, for molecular biology, sterile filtered
Sigma-Aldrich
Eau, BioPerformance Certified
Sigma-Aldrich
Genistein, synthetic, ≥98% (HPLC), powder
Sigma-Aldrich
Eau, ACS reagent
Sigma-Aldrich
Baicalein, 98%
Sigma-Aldrich
Quercetin 3-β-D-glucoside, ≥90% (HPLC)
Sigma-Aldrich
Isorhamnetin, ≥95.0% (HPLC)
Sigma-Aldrich
Eau, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Mycophenolic acid, ≥98%
Sigma-Aldrich
Daidzein, ≥98%, synthetic
USP
Quercetin dihydrate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Eau, PCR Reagent
Sigma-Aldrich
Mecamylamine hydrochloride
Sigma-Aldrich
Mycophenolic acid, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Eau, endotoxin, free
Sigma-Aldrich
Daidzin, ≥95.0% (HPLC)
Sigma-Aldrich
Genistein, from Glycine max (soybean), ~98% (HPLC)
Sigma-Aldrich
Malvidin chloride, ≥95.0% (HPLC)
Supelco
Quercetin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Eau, ACS reagent, for ultratrace analysis
Eau, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Eau, suitable for ion chromatography
Supelco
Eau, for TOC analysis
Sigma-Aldrich
Eau, tested according to Ph. Eur.