Accéder au contenu
Merck
  • Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples.

Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples.

Journal of mass spectrometry : JMS (2014-09-18)
Cosima D Calvano, Cristina De Ceglie, Carlo G Zambonin
RÉSUMÉ

In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Chloroforme, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroforme, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroforme, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroforme, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, ≥97.0% (TLC)
Sigma-Aldrich
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, ≥99.0% (10 mg phospholipid per ml CHCl3, TLC)
Sigma-Aldrich
Chloroforme, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Chloroforme, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Supelco
Chloroforme, analytical standard
Sigma-Aldrich
L-α-Phosphatidylethanolamine, dioleoyl, ≥99% (GC), ≥98% (TLC), lyophilized powder
Supelco
Chloroforme, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1,2-Dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, ≥99%
Sigma-Aldrich
Chloroforme, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
1,2-Dipalmitoyl-sn-glycero-3-phospho-L-serine sodium salt, ≥99% (TLC)
Supelco
Chloroforme, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1,2-Dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt, ≥98.0% (TLC)