Accéder au contenu
Merck

Ryanodine receptor 2 contributes to hemorrhagic shock-induced bi-phasic vascular reactivity in rats.

Acta pharmacologica Sinica (2014-09-30)
Rong Zhou, Xiao-li Ding, Liang-ming Liu
RÉSUMÉ

Ryanodine receptor 2 (RyR2) is a critical component of intracellular Ca(2+) signaling in vascular smooth muscle cells (VSMCs). The aim of this study was to investigate the role of RyR2 in abnormal vascular reactivity after hemorrhagic shock in rats. SD rats were hemorrhaged and maintained mean arterial pressure (MAP) at 40 mmHg for 30 min or 2 h, and then superior mesenteric arteries (SMA) rings were prepared to measure the vascular reactivity. In other experiments, SMA rings of normal rats and rat VSMCs were exposed to a hypoxic medium for 10 min or 3 h. SMA rings of normal rats and VSMCs were transfected with siRNA against RyR2. Intracellular Ca(2+) release in VSMCs was assessed using Fura-2/AM. The vascular reactivity of the SMA rings from hemorrhagic rats was significantly increased in the early stage (30 min), but decreased in the late stage (2 h) of hemorrhagic shock. Similar results were observed in the SMA rings exposed to hypoxia for 10 min or 3 h. The enhanced vascular reactivity of the SMA rings exposed to hypoxia for 10 min was partly attenuated by transfection with RyR2 siRNA, whereas the blunted vascular reactivity of the SMA rings exposed to hypoxia for 3 h was partly restored by transfection with RyR2 siRNA. Treatment with the RyR agonist caffeine (1 mmol/L) significantly increased Ca(2+) release in VSMCs exposed to hypoxia for 10 min or 3 h, which was partially antagonized by transfection with RyR2 siRNA. RyR2-mediated Ca(2+) release contributes to the development of bi-phasic vascular reactivity induced by hemorrhagic shock or hypoxia.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Phosphate de potassium monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Phosphate de potassium monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
Supelco
Caféine, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
L-Glutamine
Sigma-Aldrich
Phosphate de potassium monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
Caféine, powder, ReagentPlus®
Sigma-Aldrich
Phosphate de potassium monobasic, ReagentPlus®
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Caféine, anhydrous, 99%, FCC, FG
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Chlorure de sodium solution, 5 M
USP
Caféine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Chlorure de sodium, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%