Accéder au contenu
Merck

Oncogenic RIT1 mutations in lung adenocarcinoma.

Oncogene (2014-01-29)
A H Berger, M Imielinski, F Duke, J Wala, N Kaplan, G-X Shi, D A Andres, M Meyerson
RÉSUMÉ

Lung adenocarcinoma is comprised of distinct mutational subtypes characterized by mutually exclusive oncogenic mutations in RTK/RAS pathway members KRAS, EGFR, BRAF and ERBB2, and translocations involving ALK, RET and ROS1. Identification of these oncogenic events has transformed the treatment of lung adenocarcinoma via application of therapies targeted toward specific genetic lesions in stratified patient populations. However, such mutations have been reported in only ∼55% of lung adenocarcinoma cases in the United States, suggesting other mechanisms of malignancy are involved in the remaining cases. Here we report somatic mutations in the small GTPase gene RIT1 in ∼2% of lung adenocarcinoma cases that cluster in a hotspot near the switch II domain of the protein. RIT1 switch II domain mutations are mutually exclusive with all other known lung adenocarcinoma driver mutations. Ectopic expression of mutated RIT1 induces cellular transformation in vitro and in vivo, which can be reversed by combined PI3K and MEK inhibition. These data identify RIT1 as a driver oncogene in a specific subset of lung adenocarcinomas and suggest PI3K and MEK inhibition as a potential therapeutic strategy in RIT1-mutated tumors.