Accéder au contenu
Merck

In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons.

PloS one (2014-06-25)
Joana Fernandes, Marta Vieira, Laura Carreto, Manuel A S Santos, Carlos B Duarte, Ana Luísa Carvalho, Armanda E Santos
RÉSUMÉ

Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Phosphate de potassium monobasic, ACS reagent, ≥99.0%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
sulfate de magnésium, anhydrous, ReagentPlus®, ≥99.5%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Phosphate de potassium monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Chlorure de sodium solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Anticorps monoclonal anti-β-actine antibody produced in mouse, clone AC-15, ascites fluid
Sigma-Aldrich
Fluorure de phénylméthanesulfonyle, ≥98.5% (GC)
Sigma-Aldrich
Chlorure de sodium solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Chlorure de sodium, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
SAFC
Chlorure de sodium solution, 5 M
Sigma-Aldrich
HEPES solution, 1 M in H2O
Sigma-Aldrich
sulfate de magnésium, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Anticorps anti-α-tubuline monoclonal antibody produced in mouse, ascites fluid, clone B-5-1-2
Sigma-Aldrich
Phosphate de potassium monobasic, for molecular biology, ≥98.0%
Sigma-Aldrich
sulfate de magnésium, BioReagent, suitable for cell culture, suitable for insect cell culture
SAFC
HEPES
Sigma-Aldrich
sulfate de magnésium, puriss. p.a., drying agent, anhydrous, ≥98.0% (KT), powder (very fine)
Sigma-Aldrich
Chlorure de sodium solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Chlorure de sodium, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Fluorure de phénylméthanesulfonyle, ≥99.0% (T)
Sigma-Aldrich
Chlorure de sodium, 99.999% trace metals basis
Sigma-Aldrich
Magnesium sulfate solution, for molecular biology, 1.00 M±0.04 M
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
sulfate de magnésium, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥97%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Chlorure de sodium, BioXtra, ≥99.5% (AT)
SAFC
HEPES