Accéder au contenu
Merck

Sensitive amperometric biosensor for phenolic compounds based on graphene-silk peptide/tyrosinase composite nanointerface.

Biosensors & bioelectronics (2013-02-12)
Ying Qu, Ming Ma, Zhengguo Wang, Guoqing Zhan, Buhai Li, Xian Wang, Huaifang Fang, Huijuan Zhang, Chunya Li
RÉSUMÉ

New graphene-silk peptide (Gr-SP) nanosheets were prepared and successfully fabricated with tyrosinase (Tyr) as a novel biosensor for the determination of phenolic compounds. The Gr-SP nanosheets were fully characterized with transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV/Vis and FTIR spectra. The developed biosensors were also characterized with scanning electronic microscopy and electrochemical impedance spectroscopy. Using bisphenol A (BPA) as a model substrate in the sensing system, a number of key factors including the volume of Gr-SP-Tyr solution, the applied potential, pH values, temperature, and the Tyr/Gr-SP ratio that influence the analytical performance of the biosensor were investigated. The biosensor gave a linear response on the concentration ranges of 0.001-16.91 μM for catechol with the sensitivity of 7634 mA M(-1)cm(-2), 0.0015-21.12 μM for phenol with the sensitivity of 4082 mA M(-1)cm(-2), and 0.002-5.48 μM for BPA with the sensitivity of 2511 mA M(-1)cm(-2). The low detection limits were estimated to be 0.23, 0.35 and 0.72 nM (S/N=3) for catechol, phenol and BPA, respectively. The biosensors also exhibit good repeatability and long-term stability. The practical application of the biosensor was also demonstrated by the determination of BPA leaching from commercial plastic drinking bottles.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
1,2-Dihydroxybenzene, ReagentPlus®, ≥99%
Sigma-Aldrich
Pyrocatechol, ≥99%
Sigma-Aldrich
Pyrocatechol, purified by sublimation, ≥99.5%