Accéder au contenu
Merck
  • Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).

Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).

The Journal of biological chemistry (2006-02-14)
Takahiro Yano, Lin-Sheng Li, Edward Weinstein, Jiah-Shin Teh, Harvey Rubin
RÉSUMÉ

Type-II NADH-menaquinone oxidoreductase (NDH-2) is an essential respiratory enzyme of the pathogenic bacterium Mycobacterium tuberculosis (Mtb) that plays a pivotal role in its growth. In the present study, we expressed and purified highly active Mtb NDH-2 using a Mycobacterium smegmatis expression system, and the steady-state kinetics and inhibitory actions of phenothiazines were characterized. Purified NDH-2 contains a non-covalently bound flavin adenine dinucleotide cofactor and oxidizes NADH with quinones but does not react with either NADPH or oxygen. Ubiquinone-2 (Q2) and decylubiquinone showed high electron-accepting activity, and the steady-state kinetics and the NADH-Q2 oxidoreductase reaction were found to operate by a ping-pong reaction mechanism. Phenothiazine analogues, trifluoperazine, Compound 1, and Compound 2 inhibit the NADH-Q2 reductase activity with IC50 = 12, 11, and 13 microm, respectively. Trifluoperazine inhibition is non-competitive for NADH, whereas the inhibition kinetics is found to be uncompetitive in terms of Q2.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Decylubiquinone, ≥97% (HPLC)