Accéder au contenu
Merck

Preparation of solar-enhanced AlZnO@carbon nano-substrates for remediation of textile wastewaters.

Journal of environmental sciences (China) (2020-05-21)
Esraa M El-Fawal, Sherif A Younis, Yasser M Moustafa, Philippe Serp
RÉSUMÉ

Photoactive aluminum doped ZnO (AlZnO) was synthesized by sol-gel method. After that, AlZnO photocatalyst was deposited on five carbon-based materials (CBMs) using ultrasonic route followed by solid-state mixing using ball mill. The CBMs used were polyaniline (PANI), carbon nitride (CN), carbon nanotubes (CNT), graphene (G), and carbon nanofibers (CNF). The crystal phases, elemental compositions, morphological, and optical properties of the AlZnO@CBMs composites were investigated. Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency (100% removal) and photocatalytic stability (three cycles) for 50 μmol/L Methylene Blue (MB) contaminated water after 60 min irradiation in visible light at pH 6.5, 0.7% H2O2, and 5 g/L inorganic salts. Under optimum conditions, AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB, Methyl Orange (MO), Astrazone Blue FRR (BB 69), and Rhodamine B (RhB) dyes under dark, ultraviolet, visible, and direct sunlight. For mixed dyestuffs, the AlZnO@G achieved the highest dye sorption capacity (60.91 μmol dye stuffs/g) with kinetic rate 8.22 × 10-3 min-1 in 90 min via multi-layer physisorption (Freundlich isotherm) on graphene sheet. In additions, AlZnO@CN offered the highest photo-kinetic rate (Kphoto) of ~54.1 × 10-3 min-1 (93.8% after 60 min) under direct sunlight. Furthermore, the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway. Owing to their superior performance, AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Hydroxyde de potassium, for synthesis