Accéder au contenu
Merck
  • Substrate specificity of L-delta-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products.

Substrate specificity of L-delta-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase from Cephalosporium acremonium: demonstration of the structure of several unnatural tripeptide products.

The Biochemical journal (1994-07-15)
J E Baldwin, C Y Shiau, M F Byford, C J Schofield
RÉSUMÉ

Potential substrates for L-delta-(alpha-aminoadipoyl)-L-(cysteinyl)-D-valine (ACV) synthetase were initially identified using both the amino-acid-dependent ATP<-->pyrophosphate exchange reaction catalysed by the enzyme and the incorporation of 14C-radiolabelled cysteine and valine into potential peptide products. S-Carboxymethylcysteine was an effective substitute for alpha-aminoadipate and both allylglycine and vinylglycine could substitute for cysteine, indicating that the thiol group of cysteine is not essential for peptide formation. L-allo-Isoleucine but not L-isoleucine substituted effectively for valine. The structures of the presumed peptide products derived from these amino acids were confirmed by combined use of electrospray-ionization m.s. (e.s.m.s.) and 1H n.m.r. These results clearly indicate that, in common with other peptide synthetases, but in contrast with ribosomal peptide synthesis, ACV synthetase has a relatively broad substrate specificity.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
L-allo-Isoleucine