Accéder au contenu
Merck
  • On the synergistic catalytic properties of bimetallic mesoporous materials containing aluminum and zirconium: the Prins cyclisation of citronellal.

On the synergistic catalytic properties of bimetallic mesoporous materials containing aluminum and zirconium: the Prins cyclisation of citronellal.

Chemistry (Weinheim an der Bergstrasse, Germany) (2011-01-25)
Selvedin Telalović, Anand Ramanathan, Jeck Fei Ng, Rajamanickam Maheswari, Cees Kwakernaak, Fouad Soulimani, Hans C Brouwer, Gaik Khuan Chuah, Bert M Weckhuysen, Ulf Hanefeld
RÉSUMÉ

Bimetallic three-dimensional amorphous mesoporous materials, Al-Zr-TUD-1 materials, were synthesised by using a surfactant-free, one-pot procedure employing triethanolamine (TEA) as a complexing reagent. The amount of aluminium and zirconium was varied in order to study the effect of these metals on the Brønsted and Lewis acidity, as well as on the resulting catalytic activity of the material. The materials were characterised by various techniques, including elemental analysis, X-ray diffraction, high-resolution TEM, N(2) physisorption, temperature-programmed desorption (TPD) of NH(3), and (27) Al MAS NMR, XPS and FT-IR spectroscopy using pyridine and CO as probe molecules. Al-Zr-TUD-1 materials are mesoporous with surface areas ranging from 700-900 m(2) g(-1), an average pore size of around 4 nm and a pore volume of around 0.70 cm(3) g(-1). The synthesised Al-Zr-TUD-1 materials were tested as catalyst materials in the Lewis acid catalysed Meerwein-Ponndorf-Verley reduction of 4-tert-butylcyclohexanone, the intermolecular Prins synthesis of nopol and in the intramolecular Prins cyclisation of citronellal. Although Al-Zr-TUD-1 catalysts possess a lower amount of acid sites than their monometallic counterparts, according to TPD of NH(3), these materials outperformed those of the monometallic Al-TUD-1 as well as Zr-TUD-1 in the Prins cyclisation of citronellal. This proves the existence of synergistic properties of Al-Zr-TUD-1. Due to the intramolecular nature of the Prins cyclisation of citronellal, the hydrophilic surface of the catalyst as well as the presence of both Brønsted and Lewis acid sites synergy could be obtained with bimetallic Al-Zr-TUD-1. Besides spectroscopic investigation of the active sites of the catalyst material a thorough testing of the catalyst in different types of reactions is crucial in identifying its specific active sites.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
1-Propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Toluène, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
tert-Butanol, ACS reagent, ≥99.0%
Sigma-Aldrich
Orthosilicate de tétraéthyle, reagent grade, 98%
Sigma-Aldrich
Triéthanolamine, ≥99.0% (GC)
Sigma-Aldrich
Orthosilicate de tétraéthyle, ≥99.0% (GC)
Sigma-Aldrich
tert-Butanol, suitable for HPLC, ≥99.5%
Sigma-Aldrich
tert-Butanol, ≥99% (GC)
Sigma-Aldrich
Aluminum isopropoxide, ≥98%
Sigma-Aldrich
Orthosilicate de tétraéthyle, 99.999% trace metals basis
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Toluène, anhydrous, 99.8%
Sigma-Aldrich
tert-Butanol, TEBOL® 99, ≥99.3%
Sigma-Aldrich
4-tert-Butylcyclohexanone, 99%
Sigma-Aldrich
(±)-Citronellal, ≥95.0% (GC)
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
tert-Butanol, anhydrous, ≥99.5%
Sigma-Aldrich
Triéthanolamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
1,3,5-Triisopropylbenzene, 95%
Sigma-Aldrich
Orthosilicate de tétraéthyle, packaged for use in deposition systems
Sigma-Aldrich
(R)-(+)-Citronellal, technical grade
Sigma-Aldrich
Toluène, ACS reagent, ≥99.5%
Sigma-Aldrich
Aluminum isopropoxide, ≥99.99% trace metals basis
Sigma-Aldrich
Triéthanolamine, reagent grade, 98%
Sigma-Aldrich
(S)-(−)-Citronellal, 96%
Sigma-Aldrich
(±)-Citronellal, natural, ≥85%, FCC, FG
Sigma-Aldrich
1-Propanol, natural, ≥98%, FG
Supelco
Toluène, analytical standard
Supelco
1-Propanol, analytical standard