Accéder au contenu
Merck

MicroRNA-301b-3p accelerates the growth of gastric cancer cells by targeting zinc finger and BTB domain containing 4.

Pathology, research and practice (2019-10-06)
Hui Fan, Xianzhen Jin, Chunyan Liao, Lina Qiao, Wei Zhao
RÉSUMÉ

MicroRNAs (miRNAs) have been found to be aberrantly expressed and exert essential roles in the tumorigenesis and progression of gastric cancer (GC). miR-301b-3p has been recognized as a cancer-related miRNA in lung cancer, bladder cancer and hepatocellular carcinoma. However, the function of miR-301b-3p in GC progression and its underlying mechanism have not been studied yet. In this study, we found that miR-301b-3p expression was up-regulated in GC tissues compared to adjacent noncancerous tissues. Furthermore, the elevated levels of miR-301b-3p were detected in GC cell lines (SGC-7901, AGS, MKN-45 and MGC-803) as compared with GES-1 cells. Interestingly, GC tissues from patients with tumor size ≥ 5 cm and advanced tumor stages showed obvious higher levels of miR-301b-3p compared to matched controls. Functionally, miR-301b-3p knockdown prominently inhibited cell proliferation, and induced cell cycle arrest at G1 phase and apoptosis in MGC-803 cells. Meanwhile, ectopic expression of miR-301b-3p conversely regulated these biological behaviors of MKN-45 cells. Next, we found that miR-301b-3p knockdown increased, whereas miR-301b-3p overexpression reduced the expression of zinc finger and BTB domain containing 4 (ZBTB4) in GC cells. Accordingly, luciferase reporter assay identified ZBTB4 as a direct target of miR-301b-3p. ZBTB4 overexpression markedly restrained the growth of MGC-803 cells. More importantly, ZBTB4 silencing partially reversed miR-301b-3p knockdown-induced tumor suppressive effects on MGC-803 cells. In conclusion, we firstly revealed that miR-301-3p was highly expressed in GC and contributed to tumor progression via attenuating ZBTB4, which might provide a novel molecular-targeted strategy for GC treatment.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
MISSION® esiRNA, targeting human ZBTB4