Accéder au contenu
Merck

Carbofuran hampers oligodendrocytes development leading to impaired myelination in the hippocampus of rat brain.

Neurotoxicology (2018-11-25)
Brashket Seth, Anuradha Yadav, Ankit Tandon, Jai Shankar, Rajnish Kumar Chaturvedi
RÉSUMÉ

During the mammalian brain development, oligodendrocyte progenitor cells (OPCs) are generated from neuroepithelium and migrate throughout the brain. Myelination is a tightly regulated process which involves time framed sequential events of OPCs proliferation, migration, differentiation and interaction with axons for functional insulated sheath formation. Myelin is essential for efficient and rapid conduction of electric impulses and its loss in the hippocampus of the brain may result in impaired memory and long-term neurological deficits. Carbofuran, a carbamate pesticide is known to cause inhibition of hippocampal neurogenesis and memory dysfunctions in rats. Nonetheless, the effects of carbofuran on OPCs proliferation, fate determination, maturation/differentiation and myelination potential in the hippocampus of the rat brain are still completely elusive. Herein, we investigated the effects of sub-chronic exposure of carbofuran during two different time periods including prenatal and adult brain development in rats. We observed carbofuran hampers OPCs proliferation (BrdU incorporation) and oligodendroglial differentiation in vitro. Similar effects of carbofuran were also observed in the hippocampus region of the brain at both the time points. Carbofuran exposure resulted in reduced expression of key genes and proteins involved in the regulation of oligodendrocyte development and functional myelination. It also affects the survival of oligodendrocytes by inducing apoptotic cell death. The ultrastructural analysis of myelin architecture clearly depicted carbofuran-mediated negative effects on myelin compaction and g-ratio alteration. Conclusively, our study demonstrated that carbofuran alters myelination potential in the hippocampus, which leads to cognitive deficits in rats.