Accéder au contenu
Merck

GPR17 mediates ischemia-like neuronal injury via microglial activation.

International journal of molecular medicine (2018-09-19)
Bing Zhao, Hao Wang, Cai-Xia Li, Sheng-Wen Song, San-Hua Fang, Er-Qing Wei, Qiao-Juan Shi
RÉSUMÉ

GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen‑glucose deprivation/recovery (OGD/R)‑induced ischemia‑like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R‑induced responses in neuron‑glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5'‑diphosphate (UDP) in neuron‑glial mixed cultures. However, GPR17 knockdown did not affect OGD/R‑induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R‑induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia‑like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-NeuN, clone A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
Anticorps anti-protéine associée aux microtubules 2 (MAP2), Chemicon®, from rabbit
Sigma-Aldrich
Anticorps anti-protéine acide fibrillaire gliale, clone GA5, clone GA5, Chemicon®, from mouse
Sigma-Aldrich
Anticorps de chèvre anti-IgG (chaînes H+L) de souris, conjugué à du FITC, 2 mg/mL (after reconstitution), Chemicon®
Sigma-Aldrich
Leukotriene D4, ~50 μg/mL (in methanol/ammonium acetate buffer, 70:30, pH 5.6), ≥97%
Sigma-Aldrich
Goat Anti-Rabbit IgG Antibody, Cy3 conjugate, Species Adsorbed, 1.5 mg/mL, Chemicon®
Sigma-Aldrich
MISSION® esiRNA, targeting human GPR17