Skip to Content
Merck
  • Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions.

PloS one (2014-05-16)
Yoshikazu Kishino, Tomohisa Seki, Jun Fujita, Shinsuke Yuasa, Shugo Tohyama, Akira Kunitomi, Ryota Tabei, Kazuaki Nakajima, Marina Okada, Akinori Hirano, Hideaki Kanazawa, Keiichi Fukuda
ABSTRACT

Recently, induced pluripotent stem cells (iPSCs) were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs) have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-TRA-1-81 Antibody, clone TRA-1-81, clone TRA-1-81, Chemicon®, from mouse
Sigma-Aldrich
Anti-Stage-Specific Embryonic Antigen-4 Antibody, clone MC-813-70, clone MC-813-70, Chemicon®, from mouse
Sigma-Aldrich
Anti-Nestin antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-TRA-1-60 Antibody, clone TRA-1-60, clone TRA-1-60, Chemicon®, from mouse