Skip to Content
Merck
  • Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface.

Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface.

Environmental science & technology (2010-12-09)
Eric Vejerano, Slawomir Lomnicki, Barry Dellinger
ABSTRACT

Previous studies have shown environmentally persistent free radicals (EPFRs) form when chlorine- and hydroxy-substituted benzenes chemisorb on Cu(II)O-containing surfaces under postcombustion conditions. This paper reports the formation of EPFRs on silica particles containing 5% Fe(III)(2)O(3). The EPFRs are formed by the chemisorption of substituted aromatic molecular adsorbates on the metal cation center followed by electron transfer from the adsorbate to the metal ion at temperatures from 150 to 400 °C. Depending on the nature of the adsorbate and the temperature, two organic EPFRs were formed: a phenoxyl-type radical, which has a lower g-value of 2.0024-2.0040, and a second semiquinone-type radical, with a g-value of 2.0050-2.0065. Yields of EPFRs were ∼10× lower for iron than copper; however, the half-lives of EPFRs on iron ranged from 24 to 111 h, compared to the half-lives on copper of 27 to 74 min. The higher oxidation potential of Fe(III)(2)O(3) is believed to result in greater decomposition of the adsorbate, resulting in the lower EPFR yields, but increased stabilization of the EPFR once formed, resulting in the longer half-lives.

MATERIALS
Product Number
Brand
Product Description

Supelco
1,2-Dichlorobenzene, PESTANAL®, analytical standard
Sigma-Aldrich
1,2-Dichlorobenzene, suitable for HPLC, 99%
Sigma-Aldrich
1,2-Dichlorobenzene, ReagentPlus®, 99%
Sigma-Aldrich
1,2-Dichlorobenzene solution, NMR reference standard, 5% in acetone-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.